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0.1 The relation between pressure and displacement potential

First introduce the conservation of mass formula
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Now let us assume the wave takes a sinusoidal variation, i.e., we have:
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Combing (1) and (2), we have
—iwp = —poik - U. (3)
According to p/p = 2, we utilize equation (3) and eliminate p, which yields
p 7o
= pok - U. (4)
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Because the acoustics wave is a longitudinal wave, the wave vector k is of the same direction of particle
velocity ¥, and k - 0 = kv. Thus (4) can be simplified further as

p
wC—Q = pokv. (5)
Note that the sound speed is defined as
AW
== 6
e (6)
Substituting (6) into (5), we obtain
p_
, = Poc (7)

Next we establish the relationship between the displacement potential and the pressure.
First recall the definition of the displacement potential,

iV (8)

From the kinematic equation (the velocity is the time derivative of the displacement)

ou 0
U = — = — 9
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Substituting (9) into (1), we have
op 0 0 9
=_ IV = —— 10
5r = PV 5 VU =2 (poV?0). (10)

Recall that £ = 2, equation (10) is further simplified as
P

p=—po®V3 = —KV?) (11)

where
K = poc? (12)

. Now we reveal the relationship between pressure and displacement potential.



0.2 The derivation of wave equation

Here we derive the wave equation. First we assume p is independent of spatial coordinates and the
original equations can be simplified as

% = —pV -7, (13a)
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The sound speed is defined as
ap]
2
== 14
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We decompose the pressure p as
p=po+p, (15)
where p’ is the infinitesimal perturbation of pressure.
Combining (13c) . (14) and (15), we obtain
p=c*p. (16)
Since p’ is the infinitesimal perturbation, p’ < pg,. By assuming v < ¢, we obtain
(7 V)7 = 0. (17)
According to (17), equations (13a) and (13b) are simplified further as
0
a—i = —pV 7. (18a)
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We take the time derivative of the left side of (18a), and substitute (18b)(Note that the time derivative
and V can be interchanged ) , we obtain
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a—tg = atg = —pEV U= —pV- 5= —pV - <—pr'> =V -Vp =V (19)

Utilizing equation (16) and eliminating p, we obtain
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where we have assumed c is independent of time.
If we delete primes at p, p, equation (20) is simplified further as

=0, (20)
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0.3 Green’s theorem

Here we derive Green’s theorem, first we need to proof Green’s formula.
Green’s Formula: Suppose u(r),v(r), S is the boundary of V,
Then

/ / /V [u(r)V?u(r) — v(r)VZu(r)] dV = f{ [u(r)Vo(r) — v(r)Vu(r)] - dS. (22)
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Proof: From the vector indentity

V-(uv)=Vu-v+uV-v. (23)



The integrand of the volume integration of (22) is

u(r)V20(r) — v(r)VZu(r) = V - [u(r)Vo(r) — v(r)Vu(r)]. (24)

Applying Gauss’s Formula
///V~VdV:?{V-dS. (25)
v s
We obtained

///v [u(r)V20(r) = o(r)VZu(r)] dV = /// V- o(r) — v(r)Vu(r)] dV (26a)
= [@)(E) o) Tu(w) - . (261)

The proof is over.
If we let

u(r) = Gy (r,ro),v(r) = ¥(ro). (27)
Applying the Green’s formula with integrands as (27)
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which is the Green’s theorem of boundary value problems.

0.4 axisymmetric problem

8(z — zs)

Here we show why the right hand of depth-separated wave equation is S, 5
™

in axisymmetric

problem after Hankel transform.
First we need to prove the equivalent relation between ¢ function that for a point source at position
(0,0, z5) in Cartesian system , its force term S,,6(x)d(y)d(z — z5) in cylindrical system is of the form:

Sw

Sub@) )3z — 2) = =

3(r)d(z — zs). (29)

proof: We just need to verify that

/// i5(7“)5(z —2)dV =0, (0,0,2) ¢V
/// oy 0(1)8(z = 2)dV = Su, (0,0,2,) ¢V

Here (0,0, zs) is Cartesian coordinate of the point source. This is easily to be verified (if you are
interested you can dig into it).

Therefore the Helmholtz equation for axisymmetric propagation problem (a point source) in cylin-
drical system is

o\ L P, 0(r)d(z —z)
r@r( >+32+ka” 2rr ' (31)

Applying Hankel transform
(b z) = / B, 2)Jolker)rdr. (32)
0

o (31), we will obtain



/OO L9 ( 81/)) Jo(kpr)rdr + 8277[} Jo(kpr)rdr + k*(k,, 2) = / S MJO(krT)TdT’.
0 27y
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Next we simplify equation (33) to obtain depth-separated wave equation (42) below.
We know
Jo(0) = 1. (34)
, so the right hand side of (33) is
0(r)d(z — 2s) Sw
S ———= " Jo(kyr)rdr = =—25(z — 2). (35)
27
The second term of (33) is
< 029 (r, 2) d?
/0 e o heryrdr = (e, 2). (36)
10 ( oy
Then we need to compute the first term fo o r— o Jo(krr)rdr using the regular method as we
prove the properties of Fourier transform as before (signal and systems).
Computation:

Recall the properties of Bassel function of v order:

[2" ()] = & Ty -1 (). (37a)
L2 0,(@)] = o s (@), (37b)
For a function #(r, z) whose Hankel transform is ¢ (k,, z), the inverse transform is

002 = [ ol 2l (38)
Applying partial derivation to ¥ (r, z) with respect to r and use (37b), we obtain

o 0
:/0 w(kT7z)ak r

Make use of (37a) and compute

(Jo(kpr)) K2dk, = — /00o V(ky, 2)Jy (k) K2 d,. (39)

P %0 1o %
r8r< wér ) __ /0 Ollns2) s (e ) K2, = - /O K20k 2)Jo (kY nley. (40)

1
Therefore —k21)(k,, z) is the Hankel transform of 782 (r awg“, Z))7 in other words , the first term
T
n (33) is
<10 ( oy
— =- A1
/0 ror ( 87") Jo(k‘ ’I“)’I“d’l“ k? ’L/)(]CT,Z) ( )
Substituting (35), (36) and (41) to (33), we obtain

d? 9 o S
_ = P9y — 42
T (K = kD = 526z - 2). (42)



0.5 Wavenumber integration and solution for ideal waveguide
One of the properties of the v order Hankel function is

sin (1 +m)vrw

HP (ze/mm) = T2 HP (2) + e 2T g (), (43)
sin v sin v
Proof:
Because
J,(ze7™MT) = ™ ] (2). (44a)
J_(2e7MT) = eI (2). (44b)

And the Neumann function Y, (z) is the linear combination of Bessel functions

Y, () = cosvmd,(z) — J_l,(z). (15)

sin vm

In equation (45), we let z = ze/™™, combining (44a) and (44b)

Y, (zeimmy = Cosvmel™ I, (2) = I, (2), (46)
sinvm
According (45)
J_,(2) = cosvnd,(z) — sinvnY, (z) (47)
We utilize equation (47) in (46), equation (46) is further simplified as
Y, (s 2j sinmym cos v, (z) +e I T sinprY, (2) . (48)
sinvm
From the definition of the Hankel function
Hl(,2)(zej””r) = J,,(zejm”) — le,(zejm”). (49)
From the definition of Hankel functions:
1
Ju(2) = 5 (HD () + H{P (2) (50a)
1
Y, (2) = - (HV(2) — HP)(2)) (50b)
J
We combine equations (44a) (48) (50a) and (50b) in (49), we get (43). The proof is over.
If we let m = —1 in (43) ,then we have
H® (ze77™) = —e"™ HW (2). (51)
Moreover, if we let ¥ = 0 in (51) ,we obtain
HG? (2¢797) = —Hg (2). (52)

The wavenumber integral (textbook section 2.4.3.3 (2.131)) is



o

Y(r, z) = AT (kp)e k=02 Jo (k) b, dk,

A7 (k)e Ik=12 5 kdk,

oo

. 1 e .
A (ke)e™*e12 HgD (ko hy by + 5 /0 AT (ke 707 HE oyl

|

/°° o HSY (ko) + HEP (k)
0

1

2

1 (53)
2

. 1 > . .
Al_ (k,-)e_jkz’leél)(kTT)dek"' + 5 / Al_ (lf,.)e_szJzH(?) (krre_]ﬂ-)krdkr
0

— 1/ AT (ky)e™ ik=, 1zH(1)(krr)krdkT + 5/ Al—(kr)efjkzvleél)(kTr)krdkT

— 00

/ A7 (ke %=12 HD (k) Ky dky.

Normal Modes solution (section 2.4.4.3) by calculating residues
From the wavenumber integration (53) (Let the kernel of intergration be v (k,., 2))

W(r, 2) / Gk, 2)H (kyr)kpdey. (54)

And the solution of depth-searated wave equation for ideal waveguide is:

sink,zsink, (D — z)
Sw k,sink,D ’
z/}(kr’ Z) = "5

21 | sink,zssink, (D — z)
k,sink,D ’

(55)

Computation of integration (54):
Using the residue theorem

Y(r,z) = mi Z Res |9 [ (kry 2) HO )(krr)kr} . (56)

=Rrm

Because the poles of integrand is of first order, the residue is computed by

Res w(kr,z)Hg”(krr)kr} e, = lim  (ky — ko)t (ky, 2) HS (Keyr) ey (57)

kr—krm

With

K = 1/ k2 — (—)2 (582)

kom = —. (58b)
The poles occur at function ¥ (k,, z), thus

Res [0k, 2) B (o)l limis = T (= Fip )6, 2) HS ()
i m (59)
= lim (b — kpp)(kr, 2) * H(l)(krmr krm.
0

kr—krm
So we just need to compute limy, . (kr — k)0 (kr, 2), in detail

i kz i kz D — S
lim (kr_krm)sm zsink,( Zs)

S, =K 2 sink, 7

lim (b — ko )0 (ky 2) = — 22 kp—k . k s'lnk D
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We simplify equation (60) further

sink,zsink,(D — zy)

sink,zgsink, (D — 2)

li kr - krm p = 1 kr - krm .
k,«irl?m( ) k,sink,D krir’?m( ) k,sink,D
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where we have used L’Hospital rule to obtain the limit.
Therefore equation (60) becomes

Sy, Sin koo, 2 SN k26
li - —_—
g (e = et (k. 2) 27 kpm D

We substitute (62) in (59), the residue is

S, sin k. zsin k., 2s

2mD

Res [w(kr,z)Hél)(kTr)kr} [A— HY (kymr).

Finally we substitute (63) in (56)

Sw . oo
U(r,z) = —2—DZ Z sin k2 sin kzmstél)(krmr).
m=1

(62)



