海洋波动课程教学大纲

课程代码: 74120490

课程中文名称:海洋波动

课程英文名称: Ocean waves

学分: 1.5 周学时: 1.5-0.0

面向对象:

预修要求: 高等数学、海洋科学导论、物理海洋学

一、课程介绍

(一) 中文简介

本课程主要内容包括: 一、导论: 波动的定义、海洋中的波动现象、海洋中的波动运动学; 二、海洋波动: 表面波、内波、Poincaré 波、Kelvin 波、赤道 β 平面波、Rossby 波; 三、旋转、位势涡度、大尺度静力运动的位势涡度、Rossby 调整问题及能量; 四、层化准地转运动与不稳定波: 地形波、平均流的作用、边界波、斜压不稳定性。

(二) 英文简介

This course includes the following parts: a) introduction: definition of wave, various waves in the ocean and wave kinematics; b) ocean waves: surface waves, internal waves, Poincaré waves, Kelvin waves, equatorial β -Plane waves and Rossby waves; c) rotation, potential vorticity, and large-scale hydrostatic motions: potential vorticity, Rossby adjustment problem and energy; d) stratified quasi-geostrophic motion and instability waves: topographic waves, waves in the presence of a mean flow, boundary waves, and baroclinic instability.

二、教学目标

(一) 学习目标

掌握海洋中的波动运动学,掌握海洋主要波动类型的性质,包括表面波、内波、Poincaré 波、Kelvin 波、赤道 β 平面波、Rossby 波,熟悉旋转与位势涡度,以及地形波、平均流的

作用、斜压不稳定性,了解大尺度静力运动位势涡度、Rossby 调整问题及能量等。

(二) 可测量结果

能对海洋主要波动类型的性质进行分析和计算。

三、课程要求

(一) 授课方式与要求

授课方式: a. 教师讲授(讲授核心内容、总结、按顺序提示今后内容、答疑、公布讨论主题等); b. 课后阅读和团队合作(按照讨论题内容进行,对课堂推荐的参考文献,分小组进行阅读和讨论发言稿); c. 讨论课(由主题发言和质疑–应答两个环节组成,学生在讨论中如能进行尖锐质疑,则会在其绩效记录中有所体现)。

课程要求:熟悉基本知识,培养思维和表达能力及合作精神,提高中外文科学文献的阅读能力,形成对海洋主要波动类型性质的分析、计算及研究兴趣。

(二) 考试评分与建议

出勤及课堂表现占20%,课程作业占80%。

四、教学安排

周次	教学内容(包括课堂讲授、实验、讨论、考试等)	备注
1	讲授:	掌握波动的定义、海洋中的
	第一章:导论	波动运动学,了解海洋中的
	1、1 波动的定义	波动现象。(3课时)
	1、2 海洋中的波动现象	
	1、3 海洋中的波动运动学	
	讨论:海洋中的波动运动学	
2	讲授:	掌握波动方程、海洋表面波
	第二章:海洋表面波	的边界条件、平面波解及波
	1、1 波动方程	动能量。(3课时)
	1、2 海洋表面波	
	1、3 边界条件	
	1、4 平面波解	
	1、5 波动能量	
	讨论: 平面波解、波动能量	
3	讲授:	掌握海洋内波的定义、频
	第三章:海洋内波	率、色散关系、群速度、能
	1、1 定义	量,了解基本方程、反射。

	1、2 频率	(3课时)
	1、3 基本方程	
	1、4 色散关系、群速度、反射	
	1、5 能量	
	讨论: 频率、色散关系、群速度、能量	
	讲授:	掌握旋转与位势涡度,了解
	第四章:旋转、位势涡度及大尺度静力运动	大尺度静力运动位势涡度、
	1、1 旋转与位势涡度	Rossby 调整问题及能量。
4	1、2 大尺度静力运动位势涡度	(3课时)
	1、3 Rossby 调整问题	
	1、4 能量	
	讨论: 旋转与位势涡度	
	讲授:	掌握 Poincaré 波、Kelvin
	第五章: Poincaré 波、Kelvin 波及赤道 β	波及赤道 β 平面波。(3课
	平面波	时)
5	1、1 Poincaré 波	
	1、2 Kelvin 波	
	1、3 赤道 β 平面波	
	讨论: Poincaré 波、Kelvin 波及赤道 β 平面波	
	讲授:	掌握 Rossby 波的特点,了
	第六章: Rossby 波(一)	解准地转 Rossby 波 (3 课
6	1、1 Rossby 波	时)
	1、2 准地转 Rossby 波	
	讨论: Rossby 波的特点、准地转 Rossby 波	
	讲授:	掌握 Rossby 波的能量、反
	第七章: Rossby 波(二)	射,了解旋转减弱。(3课
7	1、1 能量	时)
7	1、2 反射	
	1、3 旋转减弱	
	讨论: 能量、反射	
	讲授:	掌握地形波、平均流的作
	第八章: 层化准地转运动与不稳定波	用、斜压不稳定性,了解边
	1、1 地形波	界波。(3课时)
8	1、2 平均流的作用	
	1、3 边界波	
	1、4 斜压不稳定性	
	讨论: 地形波、平均流的作用、斜压不稳定性	
L		

五、参考教材及相关资料

- 1. Waves in the Ocean and Atmosphere. J. Pedlosky, Springer, 2003.
- 2. Waves in Fluid. J. Lighthill, Cambridge University Press, 1978.
- 3. Waves in the Ocean. P. H. LeBlond and L. A. Mysak, Elsevier, 1978.

- 4. Linear and Nonlinear Waves. G. B. Whitham, John Wiley & Sons, 1974.
- 5. 海洋波动动力学, 蒋德才著, 青岛海洋大学出版社, 1992.

六、课程教学网站:

将通过校内网络提供必要的课件和文字材料链接。