
Lesson 1: Application of Reynolds Transport Theorem 

(Flow in a pipe) 

 Reynolds theorem for an arbitrary (scalar or vector) variable β. 
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a) Continuity 

Take 𝐵 = 𝑚, 𝛽 =
𝑑𝐵

𝑑𝑚
= 1  in (1) 

∫ 𝛽𝜌𝑑𝑉
𝐶𝑉

= ∫ 𝜌𝑑𝑉
𝐶𝑉

= 𝑚 = mass 

Physical Law: Conservation of mass 

𝑑𝑚

𝑑𝑡
= 0 

0 =
𝜕

𝜕𝑡
∫ 𝜌𝑑𝑉 + ∫ 𝜌�⃗�𝑑𝐴

𝐶𝑆𝐶𝑉

 

V=volume bounded by C.S. 

0 = 𝜌
𝜕𝑉

𝜕𝑡
+ ∫ 𝜌�⃗�𝑑𝐴

𝐶𝑆

 

For a pipe: on the lateral walls �⃗� ⊥ 𝐴, so �⃗�𝑑𝐴 = 0 



 

 

∫ 𝜌�⃗�𝑑𝐴
𝐶𝑆

= ∫ 𝜌�⃗�𝑑𝐴
1

+ ∫ 𝜌�⃗�𝑑𝐴
2

= −𝜌𝑉1𝐴1 + 𝜌𝑉2𝐴2 

⇒ −
𝜕𝑉

𝜕𝑡
= −𝑉1𝐴1 + 𝑉2𝐴2 = −𝑄1(𝑡) + 𝑄2(𝑡) 

For the case 𝑉(𝑡) = const. (rigid wall) 

𝑄2(𝑡) − 𝑄1(𝑡) = 0 ⇒ 𝑄1 = 𝑄2 

 

b) Momentum 

Physical Law: Newton’s second law of motion 

∑ �⃗� = 𝑚�⃗� =
𝑑

𝑑𝑡
(𝑚�⃗�) =

𝑑

𝑑𝑡
∫ 𝜌�⃗�𝑑𝑉
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Take 𝐵 = 𝑚�⃗� , 𝛽 =
𝑑𝐵

𝑑𝑚
= �⃗�  in (1) 

 

∑ �⃗� =
𝜕

𝜕𝑡
∫ 𝜌�⃗�𝑑𝑉 + ∫ 𝜌�⃗�(�⃗�𝑑𝐴)

𝐶𝑆𝐶𝑉
                                                              (2) 

 

If flow is steady, i.e. 
𝜕

𝜕𝑡
= 0 

 

Apply (2) along x-axis (streamwise direction in a pipe) 



 

∑ 𝐹𝑥 = ∫ 𝜌𝑣𝑥(�⃗�𝑑𝐴)
𝐶𝑆

                                                                                   (3) 

 

 

Application: shear stress distribution in a circular pipe of uniform cross-

section inclined at an angle θ with horizontal 

Consider steady flow in a pipe of radius R 

 

Consider cylindrical volume element of radius r < R and length Δx. 

Assuming streamlines are parallel to the pipe centerline for any cylindrical 

CV, A1 = A2 = A, V1 = V2 = Q/A. From (3) 

𝐹𝑝1 − 𝐹𝑝2 − 𝑊𝑥 − 𝐹𝑓 = 𝜌𝑉1(−𝑉1𝐴1) + 𝜌𝑉2(𝑉2𝐴2) = 0                           (4) 

Use 

𝑝1 = 𝑝(𝑥) 

𝑝2 = 𝑝(𝑥 + ∆𝑥) = 𝑝(𝑥) +
𝑑𝑝

𝑑𝑥
∆𝑥 = 𝑝1 +

𝑑𝑝

𝑑𝑥
∆𝑥 

sin𝜃 =
𝑑𝑧

𝑑𝑥
 



𝐹𝑝1 − 𝐹𝑝2 = 𝑝1𝐴1 − 𝑝2𝐴2 = −
𝑑𝑝

𝑑𝑥
𝐴∆𝑥 

𝐹𝑓 = 𝜏(𝑟) ∙ (𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑜𝑓 𝐶𝑉) = 𝜏(2𝜋𝑟∆𝑥) 

𝑊𝑥 = 𝑊𝑠𝑖𝑛𝜃 = 𝛾𝑉𝑠𝑖𝑛𝜃 = 𝛾𝐴∆𝑥𝑠𝑖𝑛𝜃 

Plug in (4), divide by (∆𝑥 ∙ 𝜋𝑟) 

𝜏(𝑟) =
𝛾𝑟

2
[−

𝑑

𝑑𝑥
(

𝑝

𝑟
+ 𝑧)] 

For 𝑟 = 0, 𝜏(𝑟 = 0) = 0. 

For 𝑟 = 0, 𝜏(𝑟 = 𝑅) = 𝜏0 =
𝛾𝑅

2
[−

𝑑

𝑑𝑥
(

𝑝

𝑟
+ 𝑧)]. 

Also for a circular pipe as 𝑉1 = 𝑉2 

𝑑𝐻 = 𝑑 (
𝑝

𝑟
+ 𝑧 +

𝑉2

2𝑔
) = 𝑑 (

𝑝

𝑟
+ 𝑧) , 𝐻 = total energy (head) 

𝜏0 =
𝛾𝑅

2
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𝑑𝐻

𝑑𝑥
] ⇒

2𝜏0

𝛾𝑅
= −

𝑑𝐻

𝑑𝑥
= −

∆𝐻12

∆𝑥12
=

ℎ𝑓12

∆𝑥12
 

ℎ𝑓 = head loss due to friction forces as difference in total head (energy) 

between two sections. i.e. the head (energy) lost between the same two 

sections 

ℎ𝑓 =
2𝜏0

𝛾𝑅
∆𝑥 =

4𝜏0

𝛾𝐷
∆𝑥 ⇒ ℎ𝑓~𝜏0 

 

c) Energy 

Energy equation for steady incompressible flow between two sections 



𝑧1 +
𝑝1

𝛾
+ 𝛼1

𝑉1
2

2𝑔
+ ℎ𝑝 = 𝑧2 +

𝑝2

𝛾
+ 𝛼2

𝑉2
2

2𝑔
+ ℎ𝑡 + ℎ𝑓12 

z = elevation above datum of section centroid 

α = kinetic energy correction factor = 
∫ 𝑢3𝑑𝐴

𝐴

𝑉3𝐴
, where V is the averaged velocity 

and 𝑉 =
∫ 𝑢𝑑𝐴

𝐴

𝑉𝐴
. 

hp =  head added by pumps 

ht =  head removed by turbine 

hf12 =  head loss due to friction 

If flow in the section is uniform α = 1. 

 

For laminar (parabolic) profile  α = 2. 

For turbulent (logarithmic or power low) profile  α = 1.03-1.06. 

In many applications of turbulent flow in pipe, assume α = 1. 

For turbulent flow in a rectangular open channel α = 1.5-2. 

 


