Digital Communications

浙江大学海洋学院

瞿逢重 jimqufz@zju. edu. cn

What is communications

- Information exchange
- There has to be a medium
 - -Fiber
 - Cable
 - -Light
 - Acoustic wave

Why Acoustic

- God said, `Let there be light,' and there was light
 — Bible, Old Testament, O1 The Creation of the World
- Electromagnetic wave attenuates rapidly
- We will focus on acoustics in this course

Digital communications

Finite alphabet

• Merits

• In this course, only digital methods

Modulations

Carrier

$$s_i(t) = A\cos(2\pi f_o t + \theta)$$

- May exist carrierless communications
- Still requires spectrum control

What modulation can you think of?

Mapping from alphabet to waveforms

$$s_i(t) = A\cos(2\pi f_o t + \theta)$$

• Amplitude, frequency, and phase

Inner product

Vector

$$\langle (x_1, x_2, ..., x_n), (y_1, y_2, ..., y_n) \rangle$$

= $x_1 y_1 + x_2 y_2 + \cdots x_n y_n$

• Waveform

$$\langle f, g \rangle = \int_a^b f g \, dx.$$

Orthonormal basis

Properties

$$x = \sum_{b \in B} \frac{\langle x, b \rangle}{\|b\|^2} b.$$

$$x = \sum_{b \in B} \langle x, b \rangle b$$

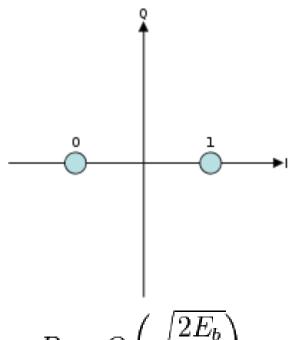
$$||x||^2 = \sum_{b \in B} |\langle x, b \rangle|^2.$$

Mapping from waveform to basis

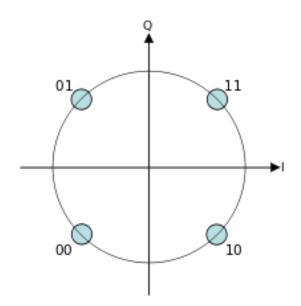
Optimum decoding

Maximum a posteriori (MAP) detection

$$\hat{\theta}_{\text{MAP}}(x) = \underset{\theta}{\operatorname{arg\,max}} \ \frac{f(x|\theta) g(\theta)}{\int_{\vartheta} f(x|\vartheta) g(\vartheta) d\vartheta} = \underset{\theta}{\operatorname{arg\,max}} \ f(x|\theta) g(\theta).$$


Maximum likelihood (ML), when

$$\hat{\theta}_{\mathrm{ML}}(x) = \operatorname*{arg\,max}_{\theta} f(x|\theta)$$


 $\hat{\theta}_{\mathrm{ML}}(x) = \argmax_{\theta} f(x|\theta)$ • Minimum Euclidian Distance, when

Error performance

- y=x+z
- AWGN

$$P_b = Q\left(\sqrt{\frac{2E_b}{N_0}}\right)$$

Error performance of FSK

• 2FSK?

• MFSK?