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Abstract 

For the past few years, the mapping of the marine habitats in the Mediterranean has shown a need 

for concern to environmental managers, stakeholders, scientists for conservation purposes. Side-

scan sonar (SSS), is one of the most recognized and effective tools in underwater mapping. 

However, the acoustic data (sonograms) interpretation requires extensive field calibration, as well 

as ground-truthing. A couple of techniques including sampling techniques have been used in time 

past, and these include scuba diving observations, grabs, Remotely Operated Vehicle (ROV) 

underwater video recordings. These techniques are known to be time consuming, expensive and 

provide sporadic information. However in this study, the use of a camera, attached to the Side Scan 

Sonar, to take underwater videos was tested. The oceanographic survey, ‘PosidCorse’, was carried 

out along the eastern coast of Corsica and optical and acoustic data were acquired using a GoProTM 

camera and a Klein 3000TM Side Scan Sonar. Five profiles were carried out between 10 and 50 m 

depth, and this was about 20 km of data acquisition. The vertical images were recorded with 

camera that was fixed under the SSS and it was positioned facing downwards, and photo mosaics 

of good quality which correspond to the total sonogram’s blind band were done. 94% of different 

bottom types and main habitats were acquired; and the structures were linked to anthropic, 

biological and hydrodynamics conditions and activities. The link between underwater videos and 

acoustic data has shown to be cost-effective and non-destructive method for ground-truthing in 

marine habitat mapping.  

Introduction 

Loss of marine coastal habitats like the seagrass meadows, corraligenous assemblages, coral reefs 

have been identified in a couple of regions of biosphere (Waycott et al., 2009; De’eath et al., 2012; 

Ponti et al., 2014). Trawling, coastal development, eutrophication,  and competition with invasive 

species are the main causes for the loss of seagrass meadows in the Mediterranean Sea 

(Boudouresqu et al., 2009; Pergent et al., 2015). The mapping of these coastal benthic communities 

is necessary for conservation purposes and as well as environmental policies (Gilman, 2002). 

Common underwater mapping methods include optical sensors (aerial photographs and satellite 

images), which works better for shallow depths of about 15 m, and acoustic sensors (multi-beam 

echosounder and side-scan sonar) in deeper waters (Godet et al., 2009; Vela et al., 2008; Brown et 

al., 2011; Bonacorsi et al., 2013). 



No matter the kind of sensor used, remote-sensing systems will always require field data (process 

of ground truthing) (Elefteriou and McIntyre, 2005; Anderson, 2007; Coggan et al., 2007; Van 

Rein et al., 2009; Brown et al., 2011) to validate the remote-sensing data. However, the acquisition 

of data is expensive and time-consuming (Kenny et al., 2003). In a survey of shallow water (0 – 

10 m), a direct observation using echo sounder and a GPS is fast and accurate based on location 

and biosensors (Vela et al., 2008).  

In surveys involving intermediate depths (-10 to -40 m), scuba diving is engaged. The data 

acquired per unit time is however not large enough and the cost is high; also, the accuracy is 

inadequate in terms of location (Leriche et al., 2006; Holon et al., 2015). For depths greater than 

50 m, two common techniques used are blind samples with cores or grabs, which are effective for 

soft bottom and use of tools like underwater video cameras, Remotely Operated Vehicles (ROVs) 

and submarines (Pergent et al., 2017).  

In recent years, underwater video images were used to calibrate side scan sonars, multibeam 

echosounder data and optical sensors (Smith et al., 2007, 2015; Lefebvre et al., 2009). While 

ground-truthing data provides sporadic information over a small part of the seafloor, sensors are 

able to provide a broad surface area data. Therefore, the aim of this study is to test the chances of 

acquiring field data continuously using a side-scan sonar, with camera attached in order to aid the 

mapping interpretation (Pergent et al., 2017).  

Material and Methods 

The study area is along the eastern coast of Corsica (Natura 2000 site Grand erbier de la Cote 

Orientale), whose depth ranges between 10 and 50 m depth. The acoustic data were acquired 

during the PosidCorse survey which was conducted during summer 2015. Two types of equipment 

used are the; 

• Side-scan sonar (Klein 3000TM), which provides acoustic data (sonogram) for the seabed 

(texture, grey color) and 

• GoProTM camera (HD Hero3 Black Edition ) with a Subspace PictureTM underwater 

housing, which is fixed under the side-scan sonar. 

The GoProTM   camera was faced down under the side-scan sonar to take vertical images which 

corresponds to the blind band (Fig 2). Five profiles were generated between 10 and 50 m depth, 

which accumulates to a 20 km data acquisition with a side-scan sonar range between 25 and 50 m 



(Table 1). The speed of the vessel used ranged from 4.5 to 6.0 km/hr. there were different 

resolutions of the camera and the numbers of frame per second were tested. Just a field of view 

(medium) was used (127°). Also, different habitats and bottom types were studied (Cymodocea 

nodosa beds, Posidonia oceanica meadows, photophilous algae, sandy and rocky bottom, and 

beach rocks). 

 

Fig. 1. (a) Klein 3000 ™ side-scan sonar (SSS) and (b) the pinger (P) with the GoPro™ camera in its housing 

(GPH) fixed on the towfish  (Pergent, et al., 2017). 

Videos from the GoPro camera were imported into the software Microsoft Image Composite Editor 

(ICE) environment, with version 2.0.3.0. this was done to make high quality panoramic image 

mosaic that correspond to the part of the ground that fell on the blind band. The options of the 

import step allow the selection of interval of the original video so to match the time process and 

to define the photo mosaic length. The ICE software auto-detect mode is used to analyze the video, 

analyze the images on the focal plane at each moment, stitch the images together and finally 

compose a photo mosaic (Pergent et al., 2017).. 



 

Fig. 2. Data recorded by the two devices, GoPro™ camera in the central part (red band) and side-scan sonar on either 

side (white bands). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.)  (Pergent, et al., 2017). 

 

Table 1 

Characteristics of transects using the GoPro™ camera and Klein 3000 side-scan sonar. fps ¼ frame per second  

(Pergent, et al., 2017). 

 

 

 

 

 

 



Table 2 

Percentage of bottom types and main habitats identified along GoPro transects  (Pergent, et al., 2017). 

 
Results 

The GoPro camera allows the discrimination of different bottom types and the main habitats, and 

even if the results are not satisfactory in deep parts (Table 2). Also, it made it possible to identify 

particular structures that are related to the water movement (intermates, ripple marks, 

accumulation of Posidonia dead leaves), to biological activity (bioturbation of the sediment like 

the burrows), anthropic activity (plastic bag, waste, boat hull and so on). Quite a number of 

burrows were identified, which were likened to Cymodocea nodosa beds; they also correspond to 

the activity of decapod crustaceans, like the Pestarella tyrrhena Petagna 1792 and the Upogebia 

pusilla Petagna 1792 (Pergent et al., 2017). 



 

Fig. 3. (a) Photo mosaic made by Microsoft© ICE, a part of the transect L3-1101 showing P. oceanica meadow and 

soft bottom with Ripple marks, (b) accumulation of P. oceanica dead leaves in an intermatte (c) and crustacean burrows 

in C. nodosa beds  (Pergent, et al., 2017). 

 

In another case, the substrate on which the Posidonia oceanica meadow grows (whether soft 

bottom and/or rocky bottom), it appears clearly on the images from the GoPro camera, which is 

an information not always shown by sonograms, and was really helpful for the interpretation of 

the acoustic data. In the Natura 2000 zone, the seagrass settled on rocky substrate which is unusual 

in a continuous habitat in the region and it represents small areas which were confirmed by the 

videos.  



 

Fig. 4. Photo mosaic of Posidonia oceanica on rocky and soft bottom (a) and the mapping interpretation (b)  (Pergent, 

et al., 2017). 

Therefore, the association of the acoustic data (sonogram) and the camera images give a wide 

range of information which serves as basis for underwater mapping. The advantages of this 

includes; 

i.  allowing an accurate validation or calibration of the acoustic data and a precise 

identification of the bottom type and/or the corresponding habitat (Fig 3);  

ii. it gives an indication of the nature of the substrate (Fig 4) and also  

iii. gives information on the ‘blind band’ which was not covered by the side-scan sonar. 

The last feature helps to prevent a subjective interpolation. This novel method also helps to map 

accurately the location of the boundaries of the habitats, on either side of the blind band (Fig 5a), 

and as well to detect small features that are present in the band (Fig 5b) (Pergent et al., 2017). 



 

Fig. 5. Association between acoustic data (sonograms) and photo mosaic from GoPro camera: (a) limit of sand with 

ripple mark and (b) rock with meadow on both sides (Pergent, et al., 2017). 

Discussion 

The use of acoustic sensors help to give a wide range of information which characterize the seabed 

(including assemblages, bathymetry and the types of bottom). However, these data require 

validation and calibration before they can be used as a basis for precision mapping. In the use of 

the side-scan sonar data, the validation requires experience and is based on the reference sonar 

images for identification of characteristic textures and spectral signatures (e.g sonogram atlas; 

Clabaut et al., 2007; Clabaut and Augris, 2014). Nonetheless, the ground-truthing is essential to 

validate the interpretations (MESH, 2008); these data are either acquired in the course of the 

oceanographic survey, and it is expected to interrupt the data acquisition by the side-scan sonar 



(Bonacorsi et al., 2012; 2013), or at the end of the survey, which involves the repeated use of the 

seagoing research facilities and an accurate GPS to make it easy to revisit the places to be verified 

(Andromede Oceanologie et Stareso, 2012; Pasqualini et al., 2000). Unfortunately, the operations 

require a significant cost. 

For past few years, use of underwater cameras has been on the rise, because; 

i. They allow good discrimination of assemblages and species (Rooper, 2008; Van 

Overmeeren et al., 2009; Hamilton et al., 2011; Pelletier et al., 2011; Bonacorsi et al., 

2012; Chabanet et al., 2012; Sane et al., 2016) 

ii. They also provide raw data banks, that can be stored and reinterpreted for purposes of 

monitoring over time (Barker et al., 1999; Lam et al., 2006; Lirman et al., 2007; Tyne 

et al., 2010; Pelletier et al., 2012), and 

iii. They do not affect or degrade the environment, compared to the popular sampling 

methods like the grab or edge. 

In this study, the coupling of the GoPro camera and the side-scan sonar was tested to validate the 

acoustic data for mapping main habitats and bottom types which occur between 10 and 50 m depth.  

The method made it possible to calibrate continuously in real time, of the sonograms acquired with 

up to 94% identification of habitats and the bottom types that are present (Table 2). It further 

provided a means to identify the nature of substrate where the habitats have developed, and also 

to show specific structures that are related to the water movement, biological and anthropic 

activities (Fig 3). 

Further, the blind band, which is directly below the sonar was properly surveyed for the first time 

(Fig 5), while previous methods involves the use of specific algorithms during the processing of 

the sonograms or use the manual interpolation.  

 From the previous images and video acquired by many towed systems (Rooper, 2008; Rende et 

al., 2015), the recordings during the study were always affected by pitch and roll. The fins where 

the side scan sonars are situated provide an effective stabilization and gives a good image quality. 

The light-weight, small-sized camera housing, that is fixed at the rear of the side-scan sonar allows 

no hydrodynamic turbulence or effect on the movement. The videos that were acquired at the 

speeds of 4.5 to 6 km/h give good quality of photo mosaics for the videos of 60 fps, even if there 

are occasional blurring and distortion. 



During the photo mosaics using the Microsoft ICE software, the time lapse mode of the GoPro 

camera with acquisition frequency of 0.5 fps gives a very satisfactory results and it prevents the 

problem of blurring due to the high coverage of the seagrass meadow and movement of leaves 

(‘canopy effect’) and also facilitates the stage of stitching up the different photographs (Rende et 

al., 2015). 

To optimize the results and allow a wider application of this novel technique in underwater 

mapping, there are some limitations to be taken care of. One is the battery life, which is just 2 h 

and will have to be extended to prevent bringing up the sonar repeatedly. Also, the sensitivity of 

the side scan sonar is important because it limits the depth of acquisition to 50 m (in the 

Mediterranean and other areas with low turbidity. It also imposes a limited height of the tow fish 

over the bottom (2 – 5 m), and therefore limits the range of the sonar to just 50 m. however, the 

sensitivity of the camera is being developed; and today, it is 6400 ISO and could go further. 

Finally, use of a wider field of view (170°) should be tested, even if there will be greater distortion 

at the edges of the image. The distortions could be corrected by calibration and correction 

procedures (Bouguet, 2010 in Rende et al., 2015). Also, installation of powerful light sources in 

order to increase the depth and the height for the photograph acquisition, using remotely controlled 

underwater systems is also envisaged for greater depths (Ludvigsen et al., 2007). However, due to 

how bulky the equipment is, it’s use on the side scan sonar might be difficult for now  (Pergent, et 

al., 2017). 
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