

Photodiode

Acknowledgement: Prof. Xu would like to thank his Ph.D supervisor Prof. Lian K. Chen at The Chinese University of Hong Kong, for providing the slides.

Outline

- Photo-diode
- Quantum Efficiency and Responsivity ۲
- Noises in Photodiode ٠
 - Shot Noise, Thermal Noise, Gain Noise
- **Receiver Performance** •
 - Signal-to-Noise Ratio
 - Bit-Error-Rate
- Receiver sensitivity •

Performance requirement

- high sensitivity (at 1.3 and 1.55 μ m for telecommunication)
- high conversion efficiency $(P \rightarrow I)$
- fast response (multi-GHz)
- high fidelity (linearity, dynamic range)
- low noise (low dark current, leakage current)
- temperature stability
- cost

Types of common Photo-detectors

- p-n diode
- P-I-N diode
- avalanche photo-diode (APD) *communication*
- Schottky-barrier diode (Metal-Semiconductor-Metal)
- photo conductor
- photo transistor
- photomultiplier

used in optical receiver for optical

P-N Diode

- P-N junction operates with reversed-biased voltage
- When an incident photon has energy > bandgap energy, an electron-hole pair (photocarrier) can be generated.
- The carriers are separated by the electric field in the depletion region and are collected by the reverse-biased junction.
 - \rightarrow photo-current I_{photo} is generated.

Region (1) : depletion region; electrons & holes swept by *E* (electric field) -- create *drift current* (fast)

Region (2) : hole and electrons diffuse randomly towards depletion region - - create *diffusion current* (slow)

Region (3) : far away from depletion region (useless if photocarriers are generated here)

➔ Diode response is fastest if electron/hole pairs are generated mainly in the depletion region.

Cutoff wavelength

cutoff wavelength : λ_c

If the incident photon's energy (h_v) is < Eg, the photon cannot be absorbed.

Q: So what is the <u>shortest</u> photon wavelength such that no photon absorption occurs in a material with bandgap energy *Eg*?

 λ_{c} : Si:1.06 $\mu m,$ GaAs 0.87 $\mu m,$ and Ge:1.6 $\mu m.$

Note: Two-photon or three-photon absorption are possible, but with very low probability. (e.g. check out the two-photon absorption (TPA) at http://en.wikipedia.org/wiki/Two-photon_absorption (TPA) (T

The photo-current

The current generated by a photodiode is given by

$$I = I_{photo} + I_{dark}$$
$$I_{photo} = P_{rec} (1 - R_e) (1 - e^{-\alpha_s w}) \frac{q}{hv}$$

where

*I*_{photo}: photo-current

 I_{dark} : dark current (current that exists even without light)

 $P_{\rm rec}$: received optical power $R_{\rm e}$: facet reflection α_s : absorption coefficient

- *w* : absorption depth
- q : electron charge (= 1.6×10^{-19} coulomb (C))
- *h* : Planck's constant (= 6.625×10^{-34} J·s)
- v: optical frequency

The absorption coefficient

 \square $\alpha \sim 10^4$ /cm

- 1.55 $\mu\mu$ In _{0.53} Ga _{0.47} As(III ς), Ge(IV)
- 1.3 $\mu\mu$) In $_{0.7}$ Ga $_{0.3}$ As $_{0.64}$ P $_{0.36}$ (III-V)
- 0.85 *µµ* Si or GaAs
- Note the sharp cut-off wavelength for direct bandgap material

Q: Can Si be used for 1550nm optical signal detection?

Quantum Efficiency and Responsivity

Photo-current:
$$I_p = P_{rec}(1-R_e)(1-e^{-\alpha_s w})\frac{q}{hv}$$
 P_{rec} : receive optical power
Define Quantum efficiency: $\eta = (1-R_e)(1-e^{-\alpha_s w})$ $\eta = \frac{I_p/q}{P_{rec}/(hv)}$
and Responsivity: $R_o = \frac{\eta q}{hv}$ Unit: A/W
Thus, photo-current: $I_p = P_{rec}R_o$

Note: \mathbf{R}_{o} is wavelength-dependent. Below λ_{c} , \mathbf{R}_{o} increases as λ increases.

Example: An InGaAs detector has an energy bandgap=0.73eV and η =60% for 1.3 μ m optical signal.

The responsivity is:

 $R_o = 0.6(1.609 \times 10^{-19}) \lambda / (6.6256 \times 10^{-34} \cdot 3 \times 10^8) = 0.63 (A/W).$ The cutoff wavelength is: $1.24/E_g = 1.70 \mu m$.

Noise in Photodetectors

Noise in Photodetectors – shot noise

Shot Noise

- Photon arrival is <u>discrete</u> and <u>random</u> in nature (Poisson distributed) Probability of receiving *n* photons in time interval τ is $p(n) = \frac{\overline{n}^n \exp(-\overline{n})}{n!}$ where \overline{n} is the mean value of *n*.
- For a certain quantum efficiency η at the photodetector, the mean number of photoelectron generated (\overline{m}) is $\overline{m} = \eta \overline{n}$
- Mean photocurrent generated is $\bar{i}_p = \left(\frac{q}{\tau}\right)\bar{m}$; Variance: $\sigma_i^2 = \left(\frac{q}{\tau}\right)^2 \sigma_m^2$

Since both *n* and *m* are Poisson distributed, $\sigma_m^2 = \overline{m}$ *q*: electron charge

Thus,
$$\sigma_i^2 = \left(\frac{q}{\tau}\right)^2 \overline{m} = \left(\frac{q}{\tau}\right) \left(\frac{q}{\tau}\overline{m}\right) = \left(\frac{q}{\tau}\right) \overline{i}_p = 2q\overline{i}_p B$$
 since $B = \frac{1}{2\tau}$
(B: bandwidth)
Shot noise $\sigma_i^2 = 2q\overline{i}_p B$

In the presence of dark current i_D of the PN junction $\Rightarrow \sigma_i^2 = 2q(\bar{i}_p + i_D)B$

Noise in Photodetectors – thermal noise

Thermal Noise

- also called Johnson noise or Nyquist noise
- at a given temperature, electrons move randomly in any conductor
- random thermal motion of electrons in a resistor ⇒ current fluctuation Even with no applied voltage bias, thermal noise still exists.
- Thermal noise

$$\sigma_T^2 = \frac{4k_B TB}{R_{eq}}$$

where k_B is the Boltzmann constant (1.38×10⁻²³ J/K), T is the operating temperature in Kelvin scale, and R_{eq} is the equivalent receiver resistance.

• In the presence of FET preamplifier,

$$\sigma_T^2 = \frac{4k_B T F_t B}{R_{eq}}$$

where F_t is the amplifier noise figure

(F_t represents the factor by which thermal noise is enhanced by various resistors used in the preamplifier)

*Noise in Photodetectors – APD Gain noise

- The impact ionization process is random \rightarrow generation of multiplied photoelectrons is also random \rightarrow additional contribution to shot noise
- multiplication factor, *M*, is also a random variable
- Shot noise in APD:

 $\sigma_i^2 = 2q(\bar{i}_p + i_D)\overline{M}^2 F_A B$

where F_A is the excess noise factor of APD with

$$F_A = k_A \overline{M} + (1 - k_A)(2 - 1/\overline{M})$$

(assume $k_A \ll 1$)

• If $k_A = 0$, F_A is at most 2 and nearly independent of APD gain \overline{M} at high \overline{M}

Signal-to-Noise Ratio (SNR)

 SNR is an important parameter to evaluate the performance of a photodetector Signal

Shot/Gain noise

Thermal noise

where i_p is the mean generated photocurrent,

 i_D is the dark current,

 i_L is the surface dark/leakage current,

 \overline{M} is the mean APD gain,

 F_A is the excess noise factor of the APD,

 R_o is the responsivity,

 $\overline{P_{rec}}$ is the mean received optical power,

B is the receiver bandwidth,

- F_t is the noise figure of the FET preamplifier,
- R_{eq} is the equivalent receiver circuit resistance,
 - T is the operating temperature (in Kelvin scale),
 - k_B is the Boltzmann constant (1.38×10⁻²³ J/K),
 - q is the electric charge (1.609×10⁻¹⁹ C)

*For *P-I-N* photodiode, $\overline{M} = 1$, $F_A = 1$ *If no FET preamplifier is used, $F_t = 1$

Signal-to-Noise Ratio (SNR)

Example: For an InGaAs P-I-N diode with the following parameters: incident power 300nW @1300 nm, $I_D=4$ nA, $\eta=0.65$, $R_L=1000 \Omega$ and negligible leakage current.

If the receiver has bandwidth 20MHz, the signal and noises are

 $I_{p}=R_{o}P=(\eta q/h v)P=0.205 \ \mu A$ $\sigma_{s}^{2}=2 \ q \ I_{p} \ \overline{M}^{2} \ B \ F_{A}=1.32\times 10^{-18} \ A^{2}$ $\sigma_{D}^{2}=2 \ q \ I_{D} \ \overline{M}^{2} \ B \ F_{A}=2.57\times 10^{-20} \ A^{2}$ $\sigma_{th}^{2}=4 \ k_{B}TB/R_{L}=3.31\times 10^{-16} \ A^{2} \ \text{at} \ T=27^{\circ}\text{C}$

Example: For a P-I-N photodiode with a load resistance of 1 k Ω without FET preamplifier. The quantum efficiency at 1550 nm is 0.8 and the receiver bandwidth is 500-MHz. The operating temperature is 27°C. Responsivity $R_o = \frac{\eta q \lambda}{hc} = 1.0$ If the detected power is -30dBm, i.e. $\overline{P}_{rec} = 1 \mu$ W, and with *B*=500MHz, $R_{eq} = 1 \text{ k}\Omega$, *T*=300K, and $R_o = 1.0$ Use $SNR = \frac{\left(R_o \overline{P}_{rec}\right)^2}{2qR_o \overline{P}_{rec}B + 4k_BTB/R_{eq}} \implies SNR = 118.47 = 20.74 \text{ dB}$

Bit-Error-Rate (BER)

Probability of detection error:

$$Pe = P(1) P(0|1) + P(0) P(1|0)$$

Receiver sensitivity

Receiver sensitivity :

the required minimum average (for "1" bit and "0" bit) incident optical power or energy to achieve <u>a desired BER</u> (typical value=10⁻⁹) at <u>a</u> <u>specific bit-rate</u>.

Q: 1. What would happen if the desired BER is smaller?2. What would happen if the bit-rate is higher?

Typical value (@1550nm and @BER=10-9) of receiver sensitivityfor 2.5 Gbit/s :~ -24dBm for for PIN and -32dBm for APD receivers.for 10 Gbit/s :~ -21dBm for PIN and -27dBm for APD

Typical optical communication link

Components	Functions
Detectors (Photodiode PD)	Convert photon to electron
Preamplifier	1^{st} amplification brings voltage level from μV to mV
	(incoming signal ~ -30 dBm, 1A/W)
Postamplifier	2 nd amplification brings mV to a usable range of a few V
Automatic Gain Control	For better dynamic range: control the gain to have about
(AGC)	same power entering time/data extraction circuit
Timing and Data Recovery	Retrieval of data and timing (for digital communcation)

Q: Why two Amps are used and what is the function of timing/data recovery?

Receiver Data Sheet

LUMENTUM 10G XFP ROSA (receiver optical sub-assemly)

Specifications

Parameter	Symbol	Conditions	Minimum	Typical	Maximum
TIA supply voltage	Vcc		3.15 V	3.30 V	3.45 V
TIA supply current	lcc	Vcc=3.3 V	—	28 mA	41mA
Wavelength	λ		1260 nm	—	1565 nm
Photodiode responsivity	R	Measured at 1310 nm	0.75 A/W	—	—
Single ended output impedance	Zout		40 Ω	50Ω	<mark>60</mark> Ω
Power consumption	Pe		-	100 mW	—
RSSI offset current (no light) ¹	Idrssi		3.5 μΑ	10 μA	16 μA
RSSI gain internal bias	Arssi		0.48 A/A	0.50A/A	0.52 A/A
Data rate	В		9.95 G	—	11.35 G
RF bandwidth (-3 dB)	BW	Small signal bandwidth	7 GHz	—	—
Low frequency cut-off (-3 dB)	fc, IOW		—	30 KHz	100 KHz
Sensitivity average power	Sens_Avg	10.709 G, NRZ, PRBS 2 ³¹ -1 1550 nm,			
		ExtRatio>10 dB, BER=10-12	—	-19.5 dBm	—
Stressed sensitivity OMA	505 4051	1555000 0 1055		4.5.15	
XFP-5R1 XED-ID2	SRS_10GbaseL	IEEE802.3ae, 10GBase-Listress	-	-16 dBm	-
	Dmm	10 700 C ND7 DDD5 231-1	1 E dDm	-10 0600	-
Overload	rmax	1260 - 1355 nm Ext Ratio=13.0 dB	1.5 0611	-	-
		BER=10 ⁻¹²			
Optical return loss	ORL				
XFP-SR1		1290 - 1330 nm	-	-	-14 dB
XFP-IR2		1530 - 1565 nm	-	-	-28 dB
Transimpedance (single-ended)	Zτ		5000Ω	7000 Ω	10000 Ω
Maximum differential output voltage	Vout, D, Max		240 mVpp	280 mVpp	350 mVpp
TIA input referred RMS noise		10 GHz bandwidth	-	0.9 μA	1.6 μA

Optical Receiver Products

Oclaro (was called Bookham):
 <u>http://www.oclaro.com/products/#title</u>

• LUMENTUM (former JDSU):

10G ROSA

https://www.lumentum.com/sites/default/files/technical-libraryitems/rxpmgrtl097-ds-oc-ae.pdf

100G 10km Optical Receiver

https://www.lumentum.com/sites/default/files/technical-library-items/jc2-10lx4aa1-ds-oc-ae.pdf