Origin of the Earth, Ocean, and Atmosphere

Topics:

- Formation of Earth & Solar System - Nebular Theory
- the Earth & the Moon
- Formation of Earth's Layered Structure
- Origin of the Earth's Atmosphere
- Origin of Earth's Oceans

Formation of Earth and the Solar System Solar system formed from solar nebula (mostly H & He)

NASA's Hubble Space Telescope image of Ghost Head Nebula

Nebular Theory

The birth of our solar system began as dust and gases (nebula) started to gravitationally collapse.

> The nebula contracted into a flattened, rotating disk that was heated by the conversion of gravitational energy into thermal energy.

Cooling of the nebular cloud caused rocks and metallic material to condense into tiny particles.

The Nebular Theory

- How many years ago the nebula of our solar system formed?
- What were the main gas of the nebula?
- What process made the core of this cloud densier and hotter?
- What process formed planets?
- What are the rocky planets in the solar system?

Debris disks detected in Hubble Space Telescope archival images of two young stars, using improved imaging processes (24 April 2014)

A Hubble Space Telescope view of a small portion of the Orion Nebula

Formation of the Earth and the Solar System

- Inner planets: mostly silicates and metal density ~ 3.3-5.5 g/cm³
- Outer planets: mostly H, He, H₂O, CH₄ (Methane), & NH₃ (Ammonia); density < 2

the Earth & the Moon

Hypotheses

- Fission
- Captured body
- Accretion (Two-object system)
- Giant impact

Earth's Moon (photo from NASA)

Evolution of the Moon (video)

Video: http://svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=10930

FeO & Al contents suggest that the highlands crust formed initially from a globe-encircling layer of molten rock, the lunar magma ocean, in which plagioclase floated and denser minerals sank.

FeO concentration on the nearside (top) and the farside (bottom) of the Moon

Recent Geochemical Studies

Consistent with **giant impact hypothesis: Zn isotopes** study (2012) – shows large scale evaporation of Zn in lunar samples

Studies that show Lunar samples have same chemical signatures as Earth rocks (conflict with giant impact hypothesis; **favor accretion hypothesis**) - **Oxygen isotopes** (2001, 2007) **Titanium isotopes** (2012)

Hydrogen Isotopes of water in lunar volcanic glasses and melt Inclusions (2013) same as Earth rocks.

Revised **giant impact hypothesis** (2012): two bodies fivetimes the size of Mars collided, then re-collided, forming a large disc of debris that eventually formed the Earth and Moon. **Formation of Earth's Layered Structure**

Heat from **gravitational contraction**, **highvelocity meteorite impacts**, & **decay of radioactive elements** caused temperature of the Earth to increase

- Iron and nickel began to melt and sink toward the center
- Lighter rock
 components floated
 outward, toward the
 surface

Origin of the Earth's Atmosphere

• mostly by **outgassing** process

Origin of Earth's Atmosphere

Outgassing

- Water vapor (H₂O)
- Carbon dioxide (CO₂)
- Other gases (N_2 , Ar, H_{2} , S, CI, CH₄, NH₃, etc.)

Origin of Earth's Oceans

 Outgassed vapor in the air condensed to form clouds and rainwater → formed the oceans

• Other origin of water: from comets/asteroids? Hydrogen isotopes studies, (D/H ratio) i.e., Deuterium (²H) to Protium (¹H) ratio

Sidebar Meteor, meteorite, asteroid, asteroid belt, comet

Rosetta studying comets (67P by esa)

Timing of Events

Earth's Oldest Known Rocks: 4.03 Billion Years Old Acasta Gneiss, Canada

Timing of Events

Earth's Oldest Known Minerals: 4.4 Billion Years Old Zircon grains in metamophosed sandstone in Western Australia

Life's Possible Ocean Origins

- The earliest evidence for life found so far is in a 3.8 billionyear-old rock, the Isua sediments, found in western Greenland
- Earth's earliest known life forms: 3.5-billion-year-old bacteria fossilized in ocean rocks

Stromatolites, Western Australia

Earth's early atmosphere different from today

Early Earth's atmosphere: No O₂ ; higher H₂O & CO₂

 O_2 build-up in the Earth's atmosphere. Great Oxygenation Event happened around 2.3 billion years ago. Red and green lines represent the range of the estimates;

Atmosphere characteristics in early Earth (~ 4.5 to 3.5 billion years ago) and current Earth

	Early Earth	Current Earth
T _{average} (°C)	290	16
P (bars)	60	1
CO ₂ Abundance	98%	0.039%

What happened to the huge amount of CO_2 gas that was in the early Earth's atmosphere ?

 $H_{2}O + CO_{2} \leftarrow \rightarrow H_{2}CO_{3}$ $H_{2}CO_{3} \leftarrow \rightarrow H^{+} + HCO_{3} \leftarrow \rightarrow 2 H^{+} + CO_{3}^{-2}$ Chemical weathering: e.g., CaSiO_{3} + 2 H^{+} <-> Ca^{2+} + SiO_{2} + H2O

Formation of Calcite in the ocean $Ca^{2+} + CO_3^{2-} \leftarrow \rightarrow CaCO_3$

Most of the CO_2 from the early Earth are now bounded in mineral **Calcite and stores in limestone.**