

# Whole Earth Structure & Geological Structures

# (I) Whole Earth Structure



(a) © 2012 Pearson Education, Inc. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



Photo courtesy of ICDP, GeoForschungsZentrum Potsdam

#### KTB drilling in Germany reached 10 KM depth



#### Xenolith in basalt

#### **Diamonds in Kimberlite**

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



Photo © Reuters New-Media Inc./Corbis







#### **Seismic Refraction**

: Bending of waves as they pass across the discontinuity.

Seismic wave velocity increases with increasing pressure, decreasing temperature, and increasing rigidity.











Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Α



# Simple model of seismic refraction

Why do seismic waves travel a curving path in the Earth?





# **Seismic Tomography**

# Using earthquakes to image Earth's interior

We have a set of the second set of the second set of the

# **Five P-wave Phases from an Earthquake**





#### Major Layers of the Earth

#### Crust - Mantle boundary -"Mohorovicic discontinuity"



-- Crust



**Granite: Sialic (rich in Si & Al)/ Felsic** (rich in feldspar and quartz)

(lighter in weight and color)

(b) oceanic (~ 5-8 Km) **Basalt: Mafic (rich in Mg & Fe)** 

(heavier and darker)



**Major Layers Within the Earth**.

(A) based on chemical properties:-- Crust

-- Mantle : from the base of the crust to ~2900 km depth **Ultramafic rock** : Higher Mg, Fe, lower Si

than ocean crust





**Isostacy** (buoyancy): continent (lighter) float on mantle (heavier), like iceberg float on water; continent has root!





© 2006 Brooks/Cole - Thomson



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

# Airy's isostacy model

 $b_1 = 5 h_1$  $b_2 = 3.2 h_2$ 



- $h_1$  = elevation of mountain belt (above sea level)
- $h_2 =$  depth of marine basin (below sea level)
- $b_1 =$  thickness of crustal roots (below depth of Moho in a cratonic area)
- $b_2$  = thickness of lithosphere mantle bulge (above depth of Moho in a cratonic area)
- c = thickness of continental crust in an undeformed (cratonic) area (ca. 35 km)

 $\rho_w = \text{density of sea water (ca. 1,000 Kg/m<sup>3</sup>)}$   $\rho_c = \text{density of continental crust (ca. 2,800 Kg/m<sup>3</sup>)}$  $\rho_m^c = \text{density of mantle (ca. 3,300 Kg/m<sup>3</sup>)}$ 



- (A) based on chemical properties:
- -- Crust
- -- Mantle
- -- Core Metallic
  - Mostly Fe
  - Small amount of Ni
  - Maybe some O, Si, S



Photo by Frank M. Hanna

#### **Major Layers Within the Earth**

**(B) Based on physical properties:** 



**Major Layers Within the Earth** 

**(B) based on mechanical properties** 

#### -- Lithosphere

: cold, strong outermost shell (~100 km thick)





(B) based on mechanical properties:

-- Lithosphere

# -- Asthenosphere: ductile second shell (~100 -300 km depth)



#### (B) based on mechanical properties:

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Continental crust Oceanic crust 0-Crust Uppermost mantie 100 km-Asthenosphere (part of mantle) 200 km -Mantle continues downward -- Mesosphere : less ductile third Inner core -(solid) shell (~ 300 km to -2,900 km Outer core (liquid) the base of the Mantle **Mantle** ~ **2900 km**) Crust

Photo by NASA





Copyright C The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

#### **Core - Mantle boundary**

: Sharp change in seismic velocity

- (B) based on mechanical properties:
- -- Lithosphere
- -- Asthenosphere
- -- Mesosphere

# -- Outer core : liquid (~ 2,300km thick from the base of the mantle)

-- Inner core: solid (innermost 1,200 km of the earth)



# Size of the core & physical state of the outer core

#### based on S-wave shadow zone



#### Sizes of inner core & outer core based on

#### **P-wave shadow zone**





# Seismic Shadow Zones



How the mantle and core were determined using the arrival times of direct P and S body waves

P waves (primary) are compressive waves that travel through solids & liquids.

S waves (secondary) are shear waves that travel through solids only.



#### **Major Layers Within the Earth**



# (II) Geologic Structures



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Photo by C. C. Plummer

## **Stress**

# (A) Compressive stress: shorten the body involved(B) Tensional stress: elongate, or pull apart, a body





# (C) Shear stress: changes in shape, rotation

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Card deck Shear strain



# **<u>Strain</u>** (deformation)

- change in size/shape in response to stress

# (A) Elastic strain

-recover to original shape after stress is released

(B) Plastic (ductile) strain
- change size/shape without fracturing the materials

## (C) Brittle strain

- rupture/fracture with stress



Strain -

(II) Geologic Structures

(A) Structures by plastic deformation

Folds - bends & wraps in rock layers -- Anticline: arched fold -- Syncline: trough-like fold





# -- Monocline

# one-limbed fold



#### (A) Structures by plastic deformation

**Dome**: beds dip away from a central point

Oldest bed in the center youngest bed at the rim

**Basin**: beds dip toward a central point

Youngest bed in the center oldest bed at the rim





Photo by D. Rahm, courtesy of Rahm Memorial Collection, Western Washington University

# (B) Structures by brittle deformation

#### : fractures in rocks

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

# a) Joints

- : fractures/cracks
  - in rocks, without movement along fractures



#### **Geologic Structures**

#### **Column Joints**: thermal stress





#### (B) Structures by brittle deformation

#### **b)** Faults: rocks move along the fractures



# Faults





B Strike-slip fault



Normal fault

Definitions of some terms:

# Fault plane = surface of movement footwall - underlying surface of fault plane hanging wall - overlying surface of fault plane

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.





### **Types of Faults**

#### Normal fault

# : hanging wall block moved downward relative to footwall block (due to tensional forces)





Photo by Diane Carlson

#### Normal faults: e.g., Mid-Ocean Ridge



#### Normal faults: e.g., Basin and Range





© 2011 Pearson Education, Inc.

#### **Reverse fault**

#### : hanging wall block moved upward relative to footwall block (due to compressive forces)







# Strike slip fault: horizontal movement



## **Strike-slip fault**



#### e.g., Fracture zones on ocean floor



# **Strike-slip fault**

e.g., San Andreas Fault Hill Companies, Inc. Permission required for reproduction or display.

