Earth Materials – Minerals and Rocks

I) Minerals

Topics:

- What are minerals?
- Characteristics of Minerals
- Types of Minerals

Minerals

(A) Definition:

-- naturally occurring

-- inorganic solid

-- definitive chemical composition

-- orderly arrangement of atoms

Amethysts in geode: minerals

Synthetic Ruby: not a mineral

Minerals (A) Definition:

-- naturally occurring

-- inorganic solid

-- definitive chemical composition

-- orderly arrangement of atoms

Rock Salt (Halite)

Sugar: Not a mineral

Diamond

mineral

not a mineral (organic)

- (1) Minerals(A) Definition:
- -- naturally occurring

-- inorganic Solid

: a mineral

-- definitive chemical composition

-- orderly arrangement of atoms

River water: not a mineral

(A) Definition:

-- naturally occurring

-- inorganic solid

NaCl : Halite

-- definitive

chemical composition

-- orderly arrangement of atoms

SiO₂ : Quartz

Gold (Au)

Graphite (C)

Mineral

(A) Definition:

- -- naturally occurring
- -- inorganic solid
- -- definitive chemical composition

-- orderly arrangement of atoms

(Crystal Structure)

Graphite

Diamond

e.g., Graphite Diamond Both are made of Carbon

What are Minerals?

Definition:

- naturally occurring
- inorganic solid
- definitive chemical composition
- orderly arrangement of atoms

Which of the following contains minerals?

- A diamond ring
- Marble floor of a hotel
- Smectite powder to cure stomachache
- Your glasses
- Your pencil
- A coin you flipped up to decide if you should go for a class
- The powder that a gymnast uses to increase friction

Characteristics of Minerals

- Allow quick mineral identification.

e.g., <u>Hardness</u> - resistance to scratching Talc is softest mineral (1 in Mohs' Hardness Scale) Diamond is hardest (10 in Mohs' Hardness Scale)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Photo © Parvinder Sethi

e.g., Gypsum: H < 2.5

Characteristics of Minerals

Crystal form

: planar surfaces form during crystal growth

Quartz: Pyramid with six-sided pillar

Copyright © The McGraw-Hill Companies, Inc. Permission required for

в

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduc

Photo © Parvinder Sethi

Halite: cubic crystal form

Characteristics of Minerals

Specific Gravity

– density of mineral/density of water

Galena: PbS (7.6)

Quartz: SiO₂ (2.65)

Characteristics of Minerals <u>Cleavage</u> - breakable weak surface(s) e.g., 1 direction of cleavage

2 sets of Cleavage e.g., Amphibole

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

e.g., 3 sets of cleavages

(d) Three directions of cleavage at right angles. Mineral examples: halite, galena

(e) Three directions of cleavage not at right angles. Mineral example: calcite

4 sets of cleavages

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Plagioclase

K-feldspar

Photo © Parvinder Sethi

© NEA, Inc.

Emerald: Beryl with trace amounts of chromium

Beryl: Be₃Al₂(SiO₃)₆

Corundum (Al2O3)

Hematite

Characteristics of Minerals:

<u>streak</u> : color of mineral powder

Characteristics of Minerals:

Metallic

luster

Glassy

Characteristics of Minerals:

Dissolve in acid: e.g., Calcite (CaCO₃)

Characteristics of Minerals Taste salty: Halite

Characteristics of Minerals

Magnetic: e.g., Magnetite

What did the paper clip say to the magnet?

"I find you very attractive!"

Characteristics of minerals:

- Hardness
- Crystal form
- Specific gravity
- Cleavage
- Color
- Streak
- Luster
- Acid, taste, magnetic.....

What is X-Ray Diffraction??

- Crystalline substances (e.g. minerals) consist of parallel rows of atoms separated by a 'unique' distance
- Simple Example:
 Halite (Na and Cl)

- Crystalline substances (e.g. minerals) consist of parallel rows of atoms separated by a 'unique' distance
- Diffraction occurs when radiation enters a crystalline substance and is scattered
- Direction and intensity of diffraction depends on orientation of crystal lattice with radiation

Schematic X-Ray Diffractometer

Mixture of 2 Minerals

Applications of XRD

- Unknown mineral ID
- Solid solution ID (e.g. feldspars, olivine)
- Mixtures of minerals
- Clay analyses
- Zeolites
- Crystallographic applications
- Material Science

Types of Minerals

Most common minerals : <u>Silicate minerals</u> - Contain **silicon + oxygen**

Silicate Minerals

building block: Silicate tetrahedron SiO₄⁴⁻

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

A Arrangement of atoms in silicon-oxygen tetrahedron

B Diagrammatic representation of a silicon-oxygen tetrahedron

Balance charge by:

a) adding cations

Silicon-oxygen tetrahedron apex toward you Silicon-oxygen tetrahedron apex away from you

Olivine (Mg, Fe)₂ SiO₄ **no cleavage**

Balance charge by:

- a) adding cations
- b) sharing oxygenanion with adjacenttetrahedron

D

Single Chain

e.g.,

pyroxene

Double chain e.g., Amphibole:

Framework Structure

e.g., Quartz (SiO2)

no cleavage

Conchoidal fracture

Photo: Tarbuck and Lutgens

Silica tetrahedra can link together to form different crystal structures: Copyright © The McGraw-Hill Companies, Inc. Permission Olivine (Mg, Fe)₂ SiO₄ required for reproduction or display. Example Isolated silicate Olivine structure Pyroxene Single-chain Pyroxene structure aroup Amphibole Mica Double-chain Amphibole structure aroup Clay mineral group Feldspar Sheet silicate Mica group Clay group structure Quartz (SiO₂) Framework silicate Quartz

structure

Feldspar group

Other Mineral Groups

Oxides

Magnetite (Fe_3O_4) Hematite (Fe_2O_3)

e.g., Galena (PbS)

Pyrite (FeS₂)

<u>**Carbonates**</u> - contain carbonate $(CO_3)^{2-}$

e.g., <u>Calcite</u> (CaCO₃) reacts with acid easily CaCO₃ + 2H⁺ -> Ca²⁺ + CO₂(gas) + H₂O

<u>Dolomite</u> (CaMg(CO₃)₂) react with acid, but not as easily

© 2011 Pearson Education, Inc.

e.g., Halite (NaCl)

Gypsum (CaSO₄ 2H₂O)

Serpentinization: 0-500° C

REACTANTS		<u>Mg:Si</u> 1	<u>ratio</u>	
(Mg end-members)				
Forsterite:	Mg_2SiO_4		2:1	
(olivine)				= Harzburgite
Enstatite:	MgSiO ₃		1:1	(depleted)
(orthopyroxe	ene)			
Diopside:	CaMgSi ₂ O ₆			
(clinopyroxe	ene)			
PRODUCTS	•			
Serpentine	$Mg_3Si_2O_5(O$	$H)_4$	1.5 : 1	1
Brucite	$Mg(OH)_2$			
Talc	$Mg_3Si_4O_{10}(O$	$(H)_2$	0.75 :	1

Chlorite $(Mg, Al, Fe)_3(Si, Al)_2O_5(OH)_4$ (analog to serpentine) Smectite $[(Ca,Na)(Al,Mg,Fe)]_3(Al,Si)_4O_{10}(OH)_2$ (analog to talc)

Serpentinization (hydration) Reactions

Olivine to Serpentine (+ Brucite):

 $2Mg_2SiO_4 + 3H_2O = Mg_3Si_2O_5(OH)_4 + Mg(OH)_2$

Enstatite to Serpentine (+ Talc):

 $6MgSiO_3 + 3H_2O = Mg_3Si_2O_5(OH)_4 + Mg_3Si_4O_{10}(OH)_2$

Olivine + Enstatite to Serpentine:

 $Mg_2SiO_4 + MgSiO_3 + 2H_2O = Mg_3Si_2O_5(OH)_4$

Addition of ~10 mol% Fe produces Magnetite and H2:
Fayalite (Fe end-member olivine):(Fe₃O₄ = Magnetite = FeO . Fe₂O₃) $3Fe_2SiO_4 + 2H_2O = 2Fe_3O_4 + 3SiO_2(aq) + 2H_2$ $4Fe^{2+} + 2H_2O \rightarrow 4Fe^{3+} + 2O^{2-} + 2H_2$

Hydrocarbon production: $4H_2 + CO_2 = CH_4 + 2H_2O$ (*Fischer-Tropsch rxn*) (at high pH: $4H_2 + CO_3^{2-} = CH_4 + H_2O + 2OH$)

Origin of CH₄ on Earth via:

Biogenic processes:

--thermal breakdown of complex C compounds in buried organic matter (*"thermogenesis"*)

$$2 \text{``CH}_2\text{O''} \Longrightarrow \text{CH}_4 + \text{CO}_2$$

--microbial production (*"methanogenesis"*) $CO_2 + 4H_2 = CH_4 + 2H_2O$

 $CH_3COOH => CH_4 + CO_2$

Abiogenic processes:

--outgassing of juvenile CH₄ from the mantle

--inorganic synthesis at high T (Fischer-Tropsch rxn)

Earth Materials – (II) Rocks

Rocks: solid, cohesive aggregates of minerals/debris

light magnified about 27 times.

^{© 2011} Pearson Education, Inc.

Rocks or minerals

- A round hard solid found in a river
- > The bling bling stuff attached to a ring
- The marble floor of a hotel
- > A flint that ancient solider used as a spear
- A shiny transparent flawless stone that Isaac Newton found at a seashore

Coal

Classes of Rocks

1) <u>Sedimentary</u>-form by weathering of rocks, deposition of sediments, or precipitation at/near Earth's surface.

Typical feature: horizontal layers (bedding) formed by settling of grains in water

Rock Classification

1) Sedimentary Rock

-- <u>Clastic rocks</u>: composed of fragments of sediments/ shells/fossils

Sediment has been transported, deposited, & consolidated

Classified based on grain size and shape

1) Sedimentary Rock -- Clastic

Bioclastic Rocks

: form by cementation of skeletal remains

e.g., Fossiliferous Limestone

Chemical Sedimentary Rocks

: crystallization of dissolved ions directly from water due to changes in T, P, or chemistry of the water.

e.g., Rock Salt

Rock Gypsum

<u>Chemical Sedimentary Rocks:</u> crystallization of dissolved ions directly from water due to changes in T, P, or chemistry of the water. <u>e.g.</u>, <u>Crystalline Limestone</u>

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Photo by Bret Bennington

Organic Sedimentary Rocks

Coal: from compression of plant remains

SWAIVIF EINVIRUNIVIENI

Classes of Rocks

2) <u>Igneous</u> - form by cooling & solidification of hot molten rock

Extrusive igneous rocks are cooled quickly. As a result, they are fine grained or have a lack of crystal growth.

Intrusive igneous rocks are formed from magma that cools slowly and as a result these rocks are coarse grained.

Magma chamber

Rock Classification

2) Igneous Rock- based on grain size & composition

Composition/Grain Size	Coarse-grained Intrusive	<i>Fine-grained</i> <i>or</i> mixed grains Extrusive
<i>Silicic</i> (light rock, SiO ₂ - rich, abundant quartz + feldspar) felsic	Granite (continental crust)	Rhyolite
Intermediate	Diorite	Andesite
<i>Mafic</i> (dark rock, less SiO_2 , rich in Mg + Fe)	Gabbro	Basalt (oceanic crust)

Typical **texture**

- : interlocking grains,
 - fit together like jigsaw puzzle

Rock Classification 1) **Igneous Rock-** classified by

- Grain size related to cooling rate. Lava cools quickly at Earth's surface
 (extrusive igneous rock), producing small mineral grains (or mixed grain)
 Magma cools slowly deep within Earth (intrusive igneous rock), producing large mineral grains
- **Composition** indicated by minerals present; roughly by color of rock (% light vs. dark minerals)
- Typical **texture : interlocking grains, fit together like jigsaw puzzle**

	irse-grained Intrusive	Fine-grained or Mixed grains Extrusive
Image: plaging lase feldspar Image: plaging lase feldspar	Granite tinental crust)	Rhyolite
A. Andesite porphyry B. Close up	Diorite	Andesite
Capital & 2006 Pearson Prentice Hal, Inc.	Gabbro	Basalt (oceanic crust)

Classes of Rocks

3) <u>Metamorphic</u> - form when pre-existing rock (**protolith**) changes shape/mineral content due to intense heat/stress.

Rock Classification

3) <u>Metamorphic Rocks</u> – classified according to presence or absence of foliation

Foliation: parallel alignment of minerals in metamorphic rock due to <u>intense stress</u> during metamorphism

Foliation

© 2011 Pearson Education, Inc.

Animation: Foliation Processes

Foliated Metamorphic Rocks

Slate	Low grade metamorphism	rock cleavage
Schist	Intermediate grade	coarse aligned mica
Gneiss	High grade	Bands of light & dark minerals

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Photo by P. D. Rowley, U.S. Geological Survey

Schist

- intermediate grade metamorphism

- visible minerals

- silky, wavy surfaces

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Photo by C. C. Plummer

Gneiss

high grade metamorphism
 alternated bands of
 felsic (light)&mafic (dark)
 minerals

Non-foliated Metamorphic Rocks

Single mineral; or, not been subjected to stress

Marble	metamorphosed
(composed of calcite)	limestone
Quartzite (composed of quartz)	metamorphosed sandstone

Jade, Jadeite and Nephrite

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Basic Chemistry

(A) Elements and Atoms

Element: a substance that can not be broken down into others substances
e.g., hydrogen, oxygen

-- Atom : smallest particle of an element that retains the properties of that element
 (Radius: 10 ⁻⁸ cm)

(B) Atomic Structure

• Protons & neutrons form the nucleus of an atom

represents tiny fraction of the volume at the center of an atom, but nearly all of the mass

• Electrons orbit the nucleus in discrete *shells* or energy levels.

- electron shells represent nearly all of the volume of an atom, but only a tiny fraction of the mass

Protons (positively charged)

Neutrons (neutral)

Electrons (negatively charged)

Atomic Number

: number of protons

in each atom

Atomic Number Element

- 1 Hydrogen (H)
 - Carbon (C)
 - Oxygen (O)

79

6

8

Gold (Au)

Atomic Mass Number

: total number of neutrons and protons

e.g., oxygen

<u># of N</u>	<u>Atomic Mass #</u>
8	16
9	17
10	18

Atoms of an element with **different numbers of neutrons** are called **isotopes** e.g., ¹⁶O, ¹⁷O, ¹⁸O

e.g., Carbon isotopes

¹² C: 6 protons + 6 neutrons

¹³ C: 6 protons + 7 neutrons

¹⁴ C: 6 protons + 8 neutrons

Isotopes

Isotopes may be either stable or unstable
 Stable isotopes retain all of their protons and neutrons through time

Unstable or radioactive isotopes spontaneously lose subatomic particles from their nuclei over time

atoms gain or lose electron(s) to form ions

lose electrons: **cation** (e.g., Na⁺) gain electrons : **anion** (e.g, Cl⁻)

"magic numbers" (e.g., 2, 8) -- most stable condition for each electron shell

(C) Chemical Bonds-- Ionic bond

: electrons transfer completely from one atom to another

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Sodium (Na⁺) ion Chlorine (Cl⁻) ion

- -- Covalent bond
- : atoms share electrons in their outer shells, no net grain or loss e.g., diamond (100% carbon)

-- Van der Waals bond

- : weak residual electric static forces
- e.g., bonding between graphite sheets

