### **Geologic** Time

- I. Principle of Uniformitarianism
- **II. Determination of Relative Age**
- **III. Absolute Age Determination**
- **IV. Unconformity**
- **V. Geologic Correlation**
- VI. The Geologic Time Scale& the Age of The Earth



#### (I) **Principle of Uniformitarianism**

#### "Present is key to past"

Current physical processes have also operated in geologic past

(proposed by James Hutton in 1700's).



- 1. Uniformity of law
- 2. Uniformity of methodology
- 3. Uniformity of kind
- 4. Uniformity of degree

# **Some exceptions:**

- Bombardment of asteroids
- Formation of Komatiite
- Evolution of life



#### Catastrophism

consisted of epochs of paroxysmal and catastrophic action interposed between periods of comparative tranquility

#### **Current consensus:**

Earth's history is a slow, gradual process

punctuated by occasional natural

catastrophic events that have affected

Earth and its inhabitants.

# **Types of Geologic Time**



# Relative Age vs. Absolute Age

• <u>Absolute Age</u>:

age of rock (or geologic event) in years

#### • <u>Relative Age</u>:

age of one rock/event with respect to another (sequence of events)

# Some exercises

- The dinosaur was extinct at the **Cretaceous**
- The sediment was deposited at **100 years** ago
- The volcano was erupted at **7000 years** ago
- The fossil appeared in the **Ordovician** strata
- The last ice age terminated 5000 years before human civilization

# (II) Determination of Relative Age by applying stratigraphic principles: (A)Principle of Original Horizontality : water-laid sediments are deposited in horizontal layering (bedding).







**(B)** Principle of **Superposition** -moving upward through sequence of sedimentary rocks, age becomes younger

# (C) Principle of Cross-Cutting RelationsIf an event cuts across rock layers,the event is younger than the rock layers



# If the dike is 300 m.y. old, the rocks that the dike cut through must be:

A REPAIR AND ARREST TO APPENDING A

#### Older than 300 m.y. old

D) Principle of Fossil Succession
fossils in sedimentary rocks evolved over geologic time. Groups of fossils in rock can represent interval of geologic time.



# **Index Fossils**



(III) Determination of absolute age by **radiometric dating** 

Decay of Radioactive Isotopes

e.g., <sup>238</sup>U----> <sup>206</sup> Pb <sup>238</sup>U: "parent"

<sup>206</sup> Pb : "daughter"





Rate of radioactive decay is given by <u>half life</u> :the time required to reduce the number of parent atoms by one-half



# Half life simulation



# **Questions: What happens during half lifes when there is only one atom left?**

Radioactive decay of an atom is statistical rather than deterministic, you cannot state precisely when an atom will decay. If there are a large number of atoms in a sample, however, the half-life can be used to effect a very accurate estimate of the amount of radioactivity that remains after a given time. Age of rock is <u>determined by knowing</u> half-life of reaction + <u>amount of parent</u> & <u>daughter isotopes</u> in the system

The mathematical expression that relates radioactive decay to geologic time is

 $D = D_0 + N(t) (e^{\lambda t} - 1)$ 

where

```
t is age of the sample,
```

D is number of atoms of the daughter isotope in the sample,

 $D_0$  is number of atoms of the daughter isotope in the original composition,

*N* is number of atoms of the parent isotope in the sample at time t (the present), given by  $N(t) = N_o e^{-\lambda t}$ , and

 $\lambda$  is the decay constant of the parent isotope, equal to the inverse of the radioactive half-life of the parent isotope times the natural logarithm of 2.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

#### TABLE 8.3 Radioactive Istopes Commonly Used for Determining Ages of Earth's Materials

| Parent Isotope       | Half-Life          | Daughter Product  | Effective Dating Range (years) |
|----------------------|--------------------|-------------------|--------------------------------|
| K-40 40K             | 1.3 billion years  | <sup>40</sup> Ar  | 100,000-4.6 billion            |
| U-238 238U           | 4.5 billion years  | <sup>206</sup> Pb | 10 million-4.6 billion         |
| U-235 235U           | 713 million years  | <sup>207</sup> Pb | 10 million-4.6 billion         |
| Th-232 232Th         | 14.1 billion years | <sup>208</sup> Pb | 10 million-4.6 billion         |
| Rb-87 87 Rb          | 49 billion years   | <sup>87</sup> Sr  | 10 million-4.6 billion         |
| C-14 <sup>14</sup> C | 5,730 years        | <sup>14</sup> N   | 100-40,000                     |

#### The effective dating range?

#### **Some examples:**

- 1. a dinosaur skull
- 2. a xenolith erupted from a volcano
- 3. a potassium feldspar
- 4. Lacustrine sediment from a plateau lake

## (IV) <u>Unconformity</u>

: A break or gap in the rock records

•Disconformity

#### •Angular Unconformity

•Nonconformity



#### **Disconformity**





Dashed lines indicate correlation of rock units between the two areas





#### Angular Unconformity





Photo by C. C. Plummer

### (IV) <u>Unconformity</u>

# : A break or gap in the rock records

# -- Disconformity

# -- Angular Unconformity

# -- Nonconformity

# (V) <u>Geologic Correlation</u> -- Physical Criteria

#### e.g., rock types, texture, structures

Copyright © The McGraw-Hill Companies, Inc. Permission required for reprodu-Coconino Sandstone







Photos by C. C. Plummer



#### **Geologic Correlation**

# -- Physical Criteria -- Fossils



#### **Fossil records: more reliable** than physical criteria for **large scale correlation**



#### (VI) The Standard Geologic Time Scale

: Based on presence or absence of characteristic life forms





# Foxfrottotte









#### **Precambrian:** ~ 90% of geologic time !

#### **The Age of Earth**

Oldest dated Earth minerals: 4.4 billion years old from some Zircon in a quartzite from West Australia

→ Earth must be older than 4.4 b.y. old





Meteroites: 4.5 b.y. to 4.6 b.y. old Most rocks from the Moon: 4.6 b.y.

# How old is the Earth?

- Oldest dated earth material: 4.4 billion years old
- Oldest rocks from the Moon: 4.6 b.y.
- Meteorites: 4.5 to 4.6 b.y.
- Assuming age of the Earth
- = Age of other planetary materials in the solar system
  - --> Age of the Earth = 4.5 b.y. to 4.6 b. y. old (i.e., 4500 - 4600 m.y. old)

# **<u>The Great Dying</u>** Video by National Geography

Marine Genus Biodiversity: Extinction Intensity



#### **The Great Dying** Video by National Geography

